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Finite-size scaling of entanglement entropy at the Anderson transition with interactions
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We study the Anderson transition with interactions in one dimension from the perspective of quantum
entanglement. Extensive numerical calculations of the entanglement entropy (EE) of the systems are carried
out through the density matrix renormalization group algorithm. We demonstrate that the EE can be used for the
finite-size scaling (FSS) to characterize the Anderson transition in both noninteracting and interacting systems.
From the FSS analysis we can obtain a precise estimate of the critical parameters of the transition. The method can
be applied to various one-dimensional models, either interacting or noninteracting, to quantitatively characterize
the Anderson transitions.
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I. INTRODUCTION

In the theory of Anderson localization, all states are
localized by disorder in low dimensions when interactions
are absent.1–3 Theories indeed predict that strong attractive
interactions are able to induce a delocalized phase.4,5 Despite
that various widely accepted numerical models of Anderson
transitions have neglected interactions, recent studies do
suggest that inclusion of interactions is necessary when
explaining the experiments.6 However, since including the
interactions makes the model a many-body system, numerical
investigations are computationally challenging. There has
been only very limited success in numerical simulations of
Anderson transitions with interactions.7–9 Although numerical
methods for studying Anderson transitions of single-particle
systems have developed into standard procedures,6,10–12 alter-
native methods must be sought when interactions are involved
since only very limited system sizes can be numerically
calculated. Schmitteckert et al. and Schuster et al. investigated
the system’s phase sensitivity of the ground-state energy to
roughly estimate the delocalized phase,7,8 while Cater and
Mackinnon tried to calculate the localization length directly
with the transfer-matrix method.9

For the single-particle systems, the finite-size scaling (FSS)
method provides the most precise quantitative characterization
of the Anderson transition.6,12 A handful of physical quantities
can be used for FSS, such as localization length, conductance,
density of states, and topological numbers.11 However, for the
many-body systems, such quantitative characterization of the
Anderson transition has been lacking.

In this paper we demonstrate that the quantum entanglement
entropy (EE) can be adopted as a FSS quantity for Anderson
transitions in one dimension. By carrying out the scaling
analysis in the framework of one-parameter scaling theory,
we give an estimate for various critical parameters of the
transition. Before being applied to the interacting system,
the method is first tested in the noninteracting system,
where the result is consistent with that given by the well-
established transfer-matrix method.

II. QUANTUM ENTANGLEMENT ENTROPY

The EE is a measure of the quantum correlations in a
system.13 For a pure state |�〉 of bipartite system AB, the

EE (von Neumann entropy) is defined as

S = −TrρA log ρA = −TrρB log ρB, (1)

where ρA(B) = TrB(A)|�〉〈�| is the reduced density matrix of
subsystem A(B). Studies have shown that it can be used to
characterize both quantum criticality and topological phases
in a variety of quantum many-body systems.14–20 Recently
there has also been increasing interest in characterizing the
disordered quantum systems through the EE.21–26

Since the amount of correlation is restricted by the system’s
correlation length, localization is naturally manifested in the
EE. Consider a one-dimensional (1D) gapless system of length
L and partitioned into two halves; in the clean limit as well as
in the delocalized phase, the EE shows logarithmic divergence
SH ∼ (c/6) log L, where c is a universal constant given by
the central charge of the associated conformal field theory.
For localized system, when L → ∞, the EE only saturates to
SH ∼ (c/6) log ξ , where ξ is the localization length.15 When
the system is finite, behavior of EE is affected by L and
becomes subtle. To study the ξ in a localized finite system,
Berkovits proposed a heuristic scaling function of EE, which
describes the crossover from the logarithmical behavior of
EE to the saturated one.27 However, in the critical regime
where ξ is divergent and hence much larger than the system
size L, the saturation of EE is mainly caused by the finite L

and the influence of ξ becomes minute. It is difficult to extract
the value of ξ with any confidence in this case. Thus we resort
to FFS of EE and aim to find out the effect of ξ .

III. MODEL HAMILTONIAN

We start by describing our model Hamiltonian, which is a
1D spinless fermion wire of length L with attractive nearest
neighbor (NN) interactions

H = −t

L−1∑

i=1

(c†i ci+1 + H.c.) +
L∑

i=1

εic
†
i ci

+U

L−1∑

i=1

(ni − 1/2)(ni+1 − 1/2) − μ

L∑

i=1

c
†
i ci , (2)

where ci and c
†
i are the annihilation and creation operators,

ni = c
†
i ci . The first two terms constitute the standard Anderson
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model while the third term represents the attractive NN
interaction (U < 0). The disorder is introduced as random
on-site potentials εi with a uniform distribution in the range
[−W/2,W/2]. Hopping amplitude is set to t = 1. The last term
represents the chemical potential which controls the particle
density of the system. Disorder has no net contribution to
the chemical potential since we tune

∑L
i=1 εi = 0. Because

the total number of particles is conserved in this system, we
will restrict ourselves to the fixed total particle number at half
filling. Also zero temperature is assumed.

In the clean limit, up to a Jordan-Wigner transformation,
this model is equivalent to the S = 1/2 XXZ spin-chain
model, for which there exists the Bethe-ansatz solution that
can be used to guide our numerical simulation. For |U | <

2, the system is gapless (i.e., metallic). For U > 2, the
charge-density-wave (CDW) phase renders the system a Mott
insulator; for U < −2, the ground state becomes unstable to
phase separation, being either empty or full filling.28 For the
disordered case, an insulator to metal transition is predicted at
U ≈ −1.4,5 A second metal to insulator transition happens at
further stronger interaction, where the fermions start to form
clusters and become localized again. In this paper, we set our
scope in the range −2 < U < 0.

The EE is numerically obtained with the density matrix
renormalization group (DMRG) algorithm, which allows the
calculation of ground state and relevant physical quantities for
large interacting systems with high accuracy.29,30 In our case,
we consider open wires of variant sizes up to L = 1024. During
the DMRG calculation, we retained 250 (for L < 1024) and
330 (for L = 1024) states for each block, and performed lattice
sweeping until both the ground-state energy and the EE are
converged.

IV. NONINTERACTING CASE

In the special case when U = 0 the model recovers to a
single-particle system. In such case no true Anderson transition
exists in the system as the only delocalized point is the clear
limit where W = 0. However, since it is well established that
the localization length in such a system shows power-law
divergence as ξ ≈ 105/W 2 close to the clean limit (i.e., with
a “critical exponent” ν = 2.0),31 we can use it as a benchmark
for the scaling analysis. In this case the EE can be obtained
quickly by the method developed by Peschel without the bother
of DMRG.32 Also averaging over a large number of random
disorder configurations is allowed.

The scaling quantity adopted is �SH = SH − S ′
H , where

SH and S ′
H are the EE of the clean and disordered systems,

respectively. The scaling behavior is shown in Fig. 1 for the
noninteracting case with system size up to L = 1024. 104

random disorder configurations have been collected for each
data point of all system sizes. We then fit the dependence of
�SH on the system size L and disorder W to a one-parameter
scaling law incorporated with a background term

�SH = f (x) + c(U,W ), (3)

where the dimensionless x is defined as x = L/2ξ . c(U,W ) is
the background term which is scaling irrelevant.6 Since ξ is
divergent in the critical regime, x is vanishingly small. This
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FIG. 1. (Color online) Upper panel: Scaling of �SH for the
noninteracting case against disorder strength with different system
sizes; the solid lines represent the best fit of the scaling function
with n = 2. Lower panel: Data collapse to the one-parameter scaling
function f (x).

allows us to do a power expansion of the scaling function

f (x) = x1/ν + a2x
2/ν + · · · + anx

n/ν. (4)

Here, ν is the critical exponent that characterizes the di-
vergence of the localization length against the controlling
parameter χ :

ξ = ξ0|χ − χc|−ν . (5)

For the noninteracting case the only controlling parameter in
our model is W and obviously Wc = 0. In Eq. (4), a1 has
been set to unity to avoid redundancy in the fitting parameters,
which also means the absolute value of ξ0 is not determined in
our fitting. In the noninteracting case when x = 0 the system
is exactly clean, which means �SH = 0, and thus c(0,0) = 0.
We can also do a power expansion for the background term
c(0,W ) against W . But during testing we find this term is
vanishingly small; thus we will treat this term as zero for this
very case. This will reduce the total number of free fitting
parameters to nt = n + 1. The fitting result is presented in
Table I. We find it is sufficient to terminate the expansion

TABLE I. Best fit of the critical exponent with 95% confidence
intervals for the noninteracting case with different number of
expansion terms. 0 < W < 0.35.

n 2 3 4

ν 2.04 ± 3% 2.03 ± 3% 1.99 ± 1.5%
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TABLE II. Same as Table I but fixing n = 4 and using different
ranges of W .

W (0, 0.35) (0, 0.25) (0, 0.15)

ν 1.99 ± 1.5% 1.99 ± 1.5% 2.00 ± 1%

terms at n = 2 for the scaling function. Considering more
expansion terms yields consistent results. We have also tested
the fitting stability using different ranges of W ; the result
also shows good consistency (see Table II). The estimated
“critical exponent” ν agrees precisely with that given by the
well-established transfer-matrix method in Ref. 31.

To verify the validity of the one-parameter scaling of the EE,
we need to see how the data collapse to the scaling function,
which supposedly is a universal fit to the data of all systems
regardless of the size L. This is shown in the lower panel of
Fig. 1, where the data from the upper panel are replotted as a
function of the dimensionless x. All points collapse nicely to a
single curve which corresponds to a fit with n = 2. Although
the absolute value of ξ0 (and hence ξ ) is not determined in the
fitting, it does not affect the data collapse since what ξ0 does
is merely shifting the curve horizontally in the plot.

V. INTERACTING CASE

Next we switch the interaction on and calculate the EE
with the DMRG algorithm. In this case our aim is to identify
the interaction-induced Anderson localization-delocalization
transition. We choose a fixed disorder strength W = 1.0 and
sweep U . For the disordered systems the EE is averaged over
1000 (for L < 1024) and 400 (for L = 1024) random disorder
configurations.

The EE of both clean (solid lines) and disordered (dotted
lines) systems are plotted in Fig. 2. For the clean case the
EE scales as (1/6) log L. However, for the disordered case
the EE is restricted by localization and hence deviates from
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FIG. 2. (Color online) SH for the interacting case of both clean
(solid lines) and corresponding disordered (dot lines) systems for
different system sizes. The inset shows the corresponding fluctuations
of SH . In the delocalized phase, the EE’s fluctuation is found to be
minimum. W = 1.0.
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FIG. 3. (Color online) Upper panel: Scaling of �SH against
interaction with different system sizes; the solid lines represent the
best fit of the scaling function with n = 2. Lower panel: Data collapse
to the one-parameter scaling function f (x). W = 1.0.

logarithmic scaling. But in a certain range of U the EE recovers
to the same logarithmic scaling as the clean case. In the weak-
interaction regime, the EE’s difference between the clean and
disordered case is clearly dependent on both the system size
and the interaction. When the interaction becomes stronger
this dependence gradually disappears but finally reemerges.
The same trend can also be observed in the fluctuations of the
EE (inset of Fig. 2). This signatures two transitions: first from
localization to delocalization and then from delocalization to
localization. In the delocalized phase �SH is only allowed to
be a scaling-irrelevant quantity since both SH and S ′

H scales
as (1/6) log L in this regime. In Fig. 2, this regime locates
roughly at −1.5 < U < 1. The same observation can be made
when fixing U and sweep W . As is shown in Fig. 4, in a
certain range of W the �SH becomes size independent but is
a function of W only. This phenomena itself can be used to
give a rough estimate of the delocalized phase, just as is done
in Ref. 7 using the ground-state phase sensitivity.

To qualitatively characterize the phase transition, we need
more extensive simulations at the vicinity of the transition
point. We will fix W and use U as the controlling parameter
in the FSS. Due to the system’s instability to phase separation
at strong interactions, which is exaggerated by the disorder,
we find it impossible to stick to half filling in the DMRG
calculations when U < −1.8. We thus choose to demonstrate
the FSS analysis at the first Anderson transition where
sufficient reliable EE data can be collected.
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FIG. 4. (Color online) �SH for different system sizes as a
function of W when fixing U = −1.2. Inset: U = −1.0.

In the upper panel of Fig. 3 we plot the scaling behavior
of �SH against U . The delocalized phase clearly appears as
a plateau in the plot. �SH shows almost no dependence on
U in the delocalized phase as is compared with Fig. 4 in
which it clearly is a function of W . This allows us to treat
the background term c(U,1.0) as a small constant a0 in the
scaling function Eq. (3). We will assume ξ = ∞ when U <

Uc. Accordingly Eq. (5) is modified as

ξ−1 = θ (U − Uc) ξ0
−1 (U − Uc)ν (6)

in the fitting, where θ (x) is the step function. In this case
the total number of free fitting parameters is nt = n + 3 since
both a0 and Uc also need to be determined by fitting. We
have also considered different numbers of expansion terms
for the scaling function. The result shows good consistency
when using n � 2. As is listed in Table III, when increasing
n the estimated Uc shows almost no change; only ν slightly
varies. In the lower panel of Fig. 3, the one-parameter scaling is
demonstrated graphically by replotting the data with U > Uc

as a function of the dimensionless x. Again the absolute value

TABLE III. Best fit of the critical parameters with 95% confidence
intervals for the interacting case with different number of expansion
terms. W = 1.0.

n 2 3 4

ν 2.33 ± 7% 2.31 ± 9% 2.35 ± 9%
Uc −1.15 ± 2% −1.15 ± 3% −1.15 ± 3%

of ξ is not determined but only the critical exponent ν that
describes ξ ’s divergence is meaningful. The obtained Uc agrees
with the roughly estimated phase boundary of Ref. 7. But both
Uc and ν deviates from Ref. 9, in which no FSS is involved
and the estimated ξ is limited to the maximum system size L

instead of diverging.

VI. CONCLUSION

In summery, we have shown that the EE is an efficient
quantity in characterizing the Anderson transition in one
dimension. The demonstrated FSS of the EE can be used
to quantitatively characterize the Anderson transitions in 1D
systems. The precision of the method can be improved by
collecting a large number of random disorder configurations
for averaging. This is particularly feasible for the noninteract-
ing systems where calculation of EE is not computationally
demanding. This is evident by comparing the data collapse
in our Figs. 1 and 3. Obviously the more intensive sample
averaging in Fig. 1 has helped to produce better data collapse
and a more precise determinant of the scaling function. For
the interacting systems, since the calculation of the EE is
naturally incorporated with the standard DMRG algorithm,
the method can also be readily applied.
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